Steric Effects on the Formation of Alkyl Radicals and Alkyl Carbenium Ions

Marvin Charton
Chemistry Department, School of Liberal Arts and Sciences, Pratt Institute, Brooklyn, New York 11205, U.S.A.

Abstract

In order to determine the variation of the steric effect with branching on the formation of alkyl radicals and alkyl carbenium ions, logarithms of rate constants for formation were correlated with the branching equation. Significant correlations were obtained for all the sets studied. The results of the correlations are (1) the composition of the alkyl steric effect as a function of branching is highly variable both for alkyl radical and for alkyl carbenium ion formation. No single steric substituent constant could possibly account for all the data. (2) The relative importance of branching at C^{2} to that at C^{1} is a linear function of the amount of branching in the leaving group. This is true for both alkyl radical and alkyl carbenium ion formation. (3) Whereas branching at C^{1} and C^{2} causes steric acceleration in the formation of both alkyl radicals and alkyl carbenium ions, branching at C^{3} results in steric deceleration. The results demonstrate the utility of the branching equation in the study of the steric effects of alkyl groups. It is capable of representing the complete range of alkyl steric effects, and can detect a change from steric acceleration to steric deceleration due to branching at different carbon atoms of the same alkyl group. The expanded branching equation has been shown to be useful in the determination of the variation of alkyl steric effect with the order of branching at a given carbon atom. Radical formation is much more sensitive to a second branch at C^{1} than is carbenium ion formation.

We have shown ${ }^{1}$ that rate and equilibrium constants of alkyl substituted systems can be correlated with the extent of branching in the alkyl group by means of the branching

$$
\begin{equation*}
Q_{\mathrm{x}}=\sum_{i=0}^{p} a_{i} n_{i} \tag{1}
\end{equation*}
$$

equation (1). In this equation, n_{l} is the number of C^{l+1} atoms in the alkyl (Ak) group [equation (2)]. Thus, in

$$
\begin{equation*}
n_{t}=\Sigma C^{t+1} \tag{2}
\end{equation*}
$$

example (1 A), in which the alkyl group is bonded to some active site, Y, at which some measurable phenomenon occurs, equations (3)-(7) hold.

$$
\begin{align*}
& \Sigma C^{1}=n_{0}=1=\text { constant for all Ak groups } \tag{3}\\
& \Sigma C^{2}=n_{1}=3 \tag{4}\\
& \Sigma C^{3}=n_{2}=4 \tag{5}\\
& \Sigma C^{4}=n_{3}=4 \tag{6}\\
& \Sigma C^{5}=n_{4}=1 \tag{7}
\end{align*}
$$

One of the great advantages of the branching equation in the study of steric effects is that, for simple alkyl groups, the number of branches is absolutely free of error. Thus, for the 1-ethylpropyl group, $n_{1}=n_{2}=$ exactly 2 . We have extended the method to cycloalkyl groups by calculating effective branching values for $\mathrm{C}^{1}, \mathrm{C}^{2}$, and when applicable, C^{3}. These effective n_{1}, n_{2}, and n_{3} values are, like any ordinary substituent parameter, subject to error. Thus, although we can enlarge the scope of the branching equation by the use of effective n_{i} values for cycloalkyl groups, we lose the advantage of having error-free parameters. The effective n_{i} values used here are taken from our earlier work. ${ }^{2 a}$

Our previous work showed that the steric effect of alkyl groups varies, and we suggested that it was unlikely that a single steric parameter could account for the behaviour of non-symmetric Ak groups. This conclusion was supported by the results obtained from the correlation of various steric

(1A)

(2)

(3)
parameters with equation (1). We found ${ }^{2 a}$ that the dependence of steric parameters (i.e. $E_{\mathrm{s}}, E_{\mathbf{s}^{\mathbf{}}}, E_{\mathrm{s}}{ }^{\mathrm{c}}, v$, and v^{\prime}) on branching varied widely. Further support for this conclusion comes from the work of Dubois and his co-workers. ${ }^{2 b}$

In this work we extend our investigation to the composition, as a function of alkyl branching, of steric effects on the formation of alkyl radicals and alkyl carbenium ions. We are interested in determining the overall effect of branching at $\mathrm{C}^{1}-\mathrm{C}^{3}$ in an alkyl group. In order to do this, we must extend equation (1) to systems in which there are j equivalent Ak groups attached either directly to Y, the active site in (2), or to a skeletal group, G, to which Y is also bonded as in (3). If we assume that the groups are equivalent, the effect of branching is additive and equation (1) becomes (8). The

$$
\begin{equation*}
Q_{x}=\sum_{j=1}^{q}\left(\sum_{i=0}^{p} a_{i} n_{i}\right)_{j} \tag{8}
\end{equation*}
$$

index i refers to the number of the carbon atom in an alkyl group, the index j to the number of the alkyl group. Thus, on the solvolysis of $\mathrm{ClCEtPr}^{1} \mathrm{Bu}, \mathrm{Y}=\mathrm{CCl}, \mathrm{Ak}^{1}=\mathrm{Et}$, $\mathrm{Ak}^{2}=\operatorname{Pr}^{\mathrm{i}}, \quad \mathrm{Ak}{ }^{3}=\mathrm{Bu}$, and $\Sigma n_{1}=4, \quad \Sigma n_{2}=1, \Sigma n_{3}=1$. Note that the carbon atom of the active site Y is excluded in determining $n_{1}-n_{3}$.

Conformations of a $\mathrm{CH}_{2} \mathrm{X}$ group interacting with an active site, Y. Top view

(18)

The simple branching equation, equation (1), assumes that each branch at a carbon atom will exert the same steric effect. This is, of course, only approximately valid. Thus, for many groups of the type $\mathrm{CH}_{2} \mathrm{X}(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br}, \mathrm{I}, \mathrm{H}, \mathrm{OH}, \mathrm{OMe}$, Et, SMe, SEt, Ph, $\mathrm{CH}_{2} \mathrm{Ph}, \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}, \mathrm{NH}_{2}$) the value of the steric parameter v is 0.63 ± 0.065. This value is not very different from that of $\mathrm{Me}\left(\mathrm{CH}_{2} \mathrm{X}, \mathrm{X}=\mathrm{H}\right)$. We have remarked elsewhere that this is an example of the principle of minimal steric interaction. This principle results from the fact that all steric interactions are repulsive and raise the energy of the species in which they occur. It follows, then, that a group whose steric effect is conformationally dependent will prefer that conformation which minimizes steric interactions. Thus, if the $\mathrm{CH}_{2} \mathrm{X}$ group is adjacent to the active site, Y , the preferred conformation is A, not B (Figure).

To provide the most accurate, detailed description of the effect of branching, it is necessary to distinguish between the first, second, and third branches at any given carbon atom. Every i th carbon atom in an alkyl group with $i>1$ must be labelled also by an index by which we may indicate whether it is the first, second, or third branch bonded to the carbon atom $i-1$. Considering the example described above by the simple branching method, we have structure (1B) for the extended branching treatment of (1). As $n_{i b}=\Sigma \mathrm{C}(i+1, \mathrm{~b})$ we have equations (9)-(16). Clearly, each n_{t} in the simple branching equation is replaced by the three variables $n_{t 1}, n_{t 2}$, $n_{i 3}$, in the extended branching equation, given by equation (17). The extended branching equation has a major dis-

$$
\begin{align*}
& \Sigma \mathrm{C}^{1}=n_{0} \pm 1 \text { for all Ak groups } \\
& \Sigma \mathrm{C}^{21}=n_{11}=1 \tag{9}\\
& \Sigma \mathrm{C}^{22}=n_{12}=1 \tag{10}\\
& \Sigma \mathrm{C}^{23}=n_{13}=1 \tag{11}\\
& \Sigma \mathrm{C}^{31}=n_{21}=3 \tag{12}\\
& \Sigma \mathrm{C}^{32}=n_{22}=1 \tag{13}\\
& \Sigma \mathrm{C}^{33}=n_{23}=0 \tag{14}\\
& \Sigma \mathrm{C}^{41}=n_{31}=1 \tag{15}\\
& \Sigma \mathrm{C}^{42}=n_{32}=1 \tag{16}\\
& Q=\sum_{b=1}^{3} \sum_{i=0}^{p} a_{l b} n_{l b} \tag{17}
\end{align*}
$$

advantage in that it may require three times as many independent variables as the simple branching equation. There are few data sets which are sufficiently extensive and well characterized to make effective use of the extending branching equation. Consider, for example, a study of the effect of branching at $C^{1}-C^{3}$ in an $A k$ group. The extended branching equation could require as many as nine independent variables. To provide two degrees of freedom per independent variable would mean a data set with 30 data points. By contrast, the simple branching equation would require no more than three independent variables and a data set with 12 data points.

Fortunately, in this work we are interested in comparing the total effect of branching at C^{1} with that at C^{2} and C^{3}. For this purpose, the simple branching equation, approximate as it is, provides an adequate description. We have correlated some data sets with the extended branching equation for the purpose of comparison.

In this work we use the extended branching equation (17a) in a form analogous to equation (8).

$$
\begin{equation*}
Q=\sum_{j=1}^{q}\left(\sum_{b=1}^{3} \sum_{i=0}^{p} a_{l b} n_{l b}\right)_{J} \tag{17a}
\end{equation*}
$$

Results and Discussion

Radical Formation.-We have taken rate constants from the literature for radical formation by pyrolysis of hydrocarbons, azo-compounds, and t-butyl peralkanoates and correlated their logarithms with equation (1) or (8), by multiple linear regression analysis. All the data used involve mechanisms which are well established and are discussed in the publications from which the data were taken. Methods of determination and experimental error are also discussed in these original sources. The data used are given in Table 1, the results of the correlations are in Tables 2 and 3. All the data sets studied gave correlations significant at least at the 99.0% confidence level (CL). The results are therefore very good. In order to describe the variation of the steric effect as a function of branching, we now consider the quantity P_{l} as defined by equation (18) where P_{l} represents the percentage

$$
\begin{equation*}
P_{i} \equiv \frac{100\left|a_{i}\right|}{\sum_{=0}^{p}\left|a_{i}\right|} \tag{18}
\end{equation*}
$$

Table 1. Data used in the correlations
(1) k_{r}, Thermolysis of $\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}-\mathrm{CO}_{3} \mathrm{Bu}^{t}$ in PhEt at 60° a $\mathrm{Y}=\mathrm{C}-\mathrm{CO}_{3} \mathrm{Bu}^{\mathrm{t}}$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 2.81$; Me, Me, Et, 3.64; Me, Me, Pr, 3.49; Me, Me, $\mathrm{C}_{5} \mathrm{H}_{11}, 4.41$; $\mathrm{Me}, \mathrm{Me}, \mathrm{C}_{8} \mathrm{H}_{17}, 4.85$; Me, Et , $\mathrm{Et}, 6.04$; Me, Me, $\mathrm{Bu}^{\mathrm{t}} \mathrm{CH}_{2}, 6.47$; $\mathrm{Et}, \mathrm{Et}, \mathrm{Et}, 8.96$; Me, Me, $\mathrm{Bu}^{\mathrm{t}}, 10.0$; $\mathrm{Et}, \mathrm{Bu}, \mathrm{Bu}$, 11.8; Et, Et, $\operatorname{Pr}^{1}, 18.3 ; \mathrm{Et}, \operatorname{Pr}^{\mathrm{i}}, \operatorname{Pr}^{\mathrm{i}}, 39.4 ; \mathrm{Pr}^{\mathrm{i}}, \operatorname{Pr}^{\mathrm{i}}, \operatorname{Pr}^{\mathrm{i}}, 70.8$
(2) k_{r}, Thermolysis of meso- $(\mathrm{AkPhCH})_{2}$ in tetralin at $300^{\circ}{ }^{b}$ $\mathbf{Y}^{1}, \mathbf{Y}^{2}=\mathbf{C}-\mathbf{C}$
$\mathrm{Me}, 0.098 ; \mathrm{Et}, 0.13$; $\mathrm{Bu}^{\mathrm{i}}, 0.58 ; \mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{t}}, 6.8 ; \mathrm{Pr}^{\mathrm{i}}, 0.96 ; \mathrm{Bu}^{\mathrm{t}}$, 4.2; $\mathrm{Bu}^{\mathrm{s}}, 90 ; \mathrm{t}-\mathrm{C}_{5} \mathrm{H}_{11}, 460$
(3) k_{rel}, Thermolysis of $(E)-\left(\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}\right)_{2} \mathrm{~N}_{2}$ in PhEt at $180^{\circ}{ }^{\mathrm{c}}$ $\mathrm{Y}^{1}, \mathrm{Y}^{2}=\mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{C}$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 1.00$; Me, Me, Et, 1.19; Me, Et, Et, 1.87 ; Me, Me, $\mathrm{C}_{8} \mathrm{H}_{17}, 2.27$; $\mathrm{Me}, \mathrm{Bu}, \mathrm{Bu}, 2.60$; Me, Me, $\mathrm{Pr}^{\mathrm{i}}, 3.00 ; \mathrm{Et}, \mathrm{Et}, \mathrm{Et}$, 3.65 ; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{\mathrm{t}}, 5.30$; $\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{1}, 5.32$; $\mathrm{Et}, \mathrm{Bu}, \mathrm{Bu}, 7.26$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{\mathrm{t}}, 7.51$; $\mathrm{Pr}^{1}, \mathrm{Bu}, \mathrm{Bu}, 14.4$; $\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{\mathrm{t}}, 16.0$; Et, Et, $\operatorname{Pr}^{1}, 20.0$; Me, $\operatorname{Pr}^{1}, \operatorname{Pr}^{1}, 23.0$; Me, Et, $\mathrm{Bu}^{t}, 36.5$; Et, $\mathrm{Pr}^{1}, \operatorname{Pr}^{1}$, 68.5; $\mathrm{Bu}^{\prime}, \mathrm{Bu}, \mathrm{Bu}, 107 ; \mathrm{Bu}^{\prime}, \mathrm{Et}, \mathrm{Et}, 107$; $\mathrm{Pr}^{\mathrm{I}}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{Pr}^{\mathrm{l}}, 206$;
 365; $\mathrm{Me}, \mathrm{Pr}^{1}, \mathrm{Bu}^{\prime} \mathrm{CH}_{2}, 453$
(4) $k_{\text {rel }}$, Thermolysis of $\mathrm{AkCO}_{3} \mathrm{Bu}^{t}$ in $\mathrm{Bu}^{\mathrm{t}} \mathrm{CHPr}^{1}$ at $103.4^{\circ}{ }^{d} \mathrm{Y}=$ $\mathrm{CO}_{3} \mathrm{Bu}^{\mathrm{t}}$
cyclo- $\mathrm{C}_{4} \mathrm{H}_{7}, 0.238$; cyclo- $\mathrm{C}_{5} \mathrm{H}_{9}, 0.437$; cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, 1.02 ; \operatorname{Pr}^{1}$, 1; Me, 0.12; $\mathrm{Bu}^{\prime}, 17.4$
(6) $k_{\text {rel }}$, Thermolysis of $(Z)-\left(\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}\right)_{2} \mathrm{~N}_{2}$ in EtOH at $-28.1^{\circ} \mathrm{e}$ $\mathrm{Y}^{1}, \mathrm{Y}^{2}=\mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{C}$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 1.00$; Me, $\mathrm{Me}, \mathrm{Et}, 4.4$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Pr}^{\mathrm{r}}, 64$; Me, Me, $\mathrm{Bu}^{1}, 153$; Me, Et, Et, 37; Et, Et, Et, 1428
(7) $\Delta G^{\ddagger} / \mathrm{kcal} \mathrm{mol}{ }^{-1}$, Thermolysis of $\left(\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{CH}\right)_{2}$ at $300^{\circ}{ }^{f} \mathrm{Y}^{1}$, $\mathrm{Y}^{2}=\mathrm{C}-\mathrm{C}$
$\mathrm{Me}, \mathrm{Me}, 68 ; \mathrm{Me}$, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$, 59 ; cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}$, $52.1 ; \mathrm{Bu}^{\mathrm{t}}$, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, 42.6 ; \mathrm{Pr}^{\mathrm{i}}$, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, 52.9 ; \mathrm{Bu}^{\mathrm{t}}, \mathrm{Bu}^{\mathrm{t}}, 29.6$
(8) $\Delta G^{\ddagger} / \mathrm{kcal} \mathrm{mol}^{-1}$, Thermolysis of $\left(\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}\right)_{2}$ at $300^{\circ} \boldsymbol{\theta}$ $\mathrm{Y}^{1}, \mathrm{Y}^{2}=\mathrm{C}^{-} \mathbf{C}$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 60.5 ; \mathrm{Me}, \mathrm{Me}, \mathrm{Et}, 55.3$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Pr}^{1}, 46.4 ; \mathrm{Me}, \mathrm{Me}$, $\mathrm{Bu}^{\mathrm{t}}, 46.3$; Me, Me, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, 45.8$; Et, Et, Et, 43.1; Me, Et, cyclo- $\mathrm{C}_{6} \mathrm{H}_{11}, 39.6$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{{ }^{\prime}}, 33.7$
(9) k_{r}, Thermolysis of $\left[\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{C}(\mathrm{CN})\right]_{2} \mathrm{~N}_{2}$ in PhMe at $80.2^{\circ}{ }^{h}$ $\mathbf{Y}^{1}, \mathrm{Y}^{2}=\mathrm{C}-\mathrm{N}=\mathrm{N}-\mathrm{C}$
$\mathrm{Me}, \mathrm{Me}, 1.66$; Me, Et, 0.87 ; Me, $\mathrm{Pr}, 1.70$; Me, $\operatorname{Pr}^{1}, 1.03$; Me, $\mathrm{Bu}, 1.58$; $\mathrm{Me}, \mathrm{Bu}^{\mathrm{l}}, 7.1$; $\mathrm{Me}, \mathrm{Bu}^{\mathbf{t}}, 1.09$; $\mathrm{Me}, \mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{l}}, 1.36$; $\mathrm{Me}, \mathrm{C}_{5} \mathrm{H}_{11}, 1.63 ; \mathrm{Pr}^{1}, \operatorname{Pr}^{\mathrm{i}}, 1.25 ; \mathrm{Bu}^{\mathrm{t}}, \mathrm{Bu}^{1}, 49.5 ; \mathrm{Pr}^{1}, \mathrm{Et}, 0.95$
(10) $\log k_{\mathrm{r}}$, Thermolysis of $(E)-\mathrm{Ak}_{2} \mathrm{~N}_{2}$ at $600^{\circ}(\mathrm{g})^{i} \mathrm{Y}^{1}, \mathrm{Y}^{2}=-\mathrm{N}=\mathrm{N}-$ $\mathrm{Me},-2.62 ; \mathrm{Et},-1.91 ; \mathrm{Bu},-1.71 ; \mathrm{Bu}^{1},-1.61 ; \mathrm{Pr}^{1},-0.90$; $\mathrm{Bu}^{\mathrm{s}},-0.41 ; \mathrm{Bu}^{4}, 1.25$
(101) $k_{\text {rel }}$, Solvolysis of $\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3}-\mathrm{CO}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$ in 80% v / v aqueous MeAc at $0^{\circ}{ }^{c} \mathrm{Y}=\mathrm{CO}(\mathrm{CO}) \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 1.00$; Me, Me, Et, 2.13; Me, Et, Et, 3.99 ; Me, Me, $\mathrm{C}_{8} \mathrm{H}_{17}, 2.17$; $\mathrm{Me}, \mathrm{Bu}, \mathrm{Bu}, 3.96$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Pr}^{1}, 2.09$; Et, Et, Et, $6.35 ; \mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{1}, 4.50 ; \mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{1}, 5.90 ; \mathrm{Et}, \mathrm{Bu}, \mathrm{Bu}, 11.1$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{1}, 4.57$; $\mathrm{Et}, \mathrm{Bu}^{1}, \mathrm{Pr}^{1}, 20.2$; $\mathrm{Me}, \mathrm{Pr}^{1}, \mathrm{Pr}^{1}, 18.4 ; \mathrm{Me}$, Et, $\mathrm{Bu}^{\mathrm{i}}, 48.7$; $\mathrm{Bu}^{\mathrm{i}}, \mathrm{Bu}, \mathrm{Bu}, 155$; $\mathrm{Pr}^{i}, \operatorname{Pr}^{1}, \mathrm{Pr}^{1}, 135 ; \mathrm{Me}, \mathrm{Me}$, $\mathrm{Bu}^{\mathrm{t}} \mathrm{CH}_{2}, 13.2$
(102) k_{r}, Solvolysis of $\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{CCl}$ in $80 \% \mathrm{v} / \mathrm{v}$ aqueous MeAc at 60° J $\mathrm{Y}=\mathrm{CCl}$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 1.15$; Me, Me, Et, 1.55; Me, Et, Et, 2.17; Me, Me, $\mathrm{C}_{8} \mathrm{H}_{17}, 0.89$; Me, Me, $\mathrm{Pr}^{1}, 1.06$; Et, Et, Et, 2.29; Me, Me, Bu^{t}, 1.63 ; $\mathrm{Et}, \mathrm{Bu}, \mathrm{Bu}, 1.42$; $\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{1}, 5.74$; Me, $\mathrm{Et}, \mathrm{Bu}^{1}, 5.92$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{\prime} \mathrm{CH}_{2}, 20.1$

Table 1 (continued)
(103) $k_{\text {rel }}$, Solvolysis of $\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{CO}-\mathrm{CO}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$ in 60% v / v aqueous dioxan (0.1 M in LiClO_{4}) at $100^{\circ} \mathrm{k} \mathrm{Y}=\mathrm{CO}(\mathrm{CO})$ $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-4$
$\mathrm{Me}, \mathrm{Me}, \mathrm{Me}, 1.00 ; \mathrm{Me}, \mathrm{Me}, \mathrm{Et}, 1.28 ; \mathrm{Me}, \mathrm{Me}, \mathrm{C}_{8} \mathrm{H}_{17}, 0.53$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Pr}^{\mathrm{l}}, 1.93$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{\mathrm{i}}, 3.20$; $\mathrm{Me}, \mathrm{Me}, \mathrm{Bu}^{\mathrm{t}}, 3.91$; Me, Me, $\mathrm{CH}_{2} \mathrm{Bu}^{\dagger}, 6.40 ; \mathrm{Me}, \mathrm{Et}, \mathrm{Et}, 2.66$; $\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{1}, 4.43$; $\mathrm{Me}, \mathrm{Et}, \mathrm{Bu}^{1}$, 7.75 ; Me, Et, $\mathrm{Bu}^{\mathrm{t}}, 17.5$; Me, $\mathrm{Et}, \mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{t}}, 7.89$; Et, $\mathrm{Et}, \mathrm{Et}, 3.84$; $\mathrm{Et}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}, 9.80$; $\mathrm{Et}, \mathrm{Et}, \mathrm{Bu}^{\mathrm{t}}, 50$; $\mathrm{Et}, \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Bu}^{\mathrm{l}}, 9.50 ; \mathrm{Me}$, $\operatorname{Pr}^{i}, \operatorname{Pr}^{i}, 7.10 ; \mathrm{Et}^{1} \operatorname{Pr}^{1}, \operatorname{Pr}^{1}, 18.0 ; \operatorname{Pr}^{1}, \operatorname{Pr}^{1}, \operatorname{Pr}^{1}, 49.0 ; \mathrm{Bu}, \mathrm{Bu}, \mathrm{Et}$, 0.94 ; $\mathrm{Bu}, \mathrm{Bu}, \mathrm{Pr}^{1}, 1.34$; $\mathrm{Bu}, \mathrm{Bu}, \mathrm{Bu}^{\prime}, 3.54$
(104) k_{r}, Solvolysis of $\mathrm{AkMe}_{2} \mathrm{CCl}$ in 80% aqueous EtOH at 25° ' $\mathrm{Y}=\mathbf{C C l}$
$\mathrm{Me}, 0.0326 ; \mathrm{Bu}^{\mathrm{t}} \mathrm{CH}_{2}, 0.680$; Et, 0.055 ; Bu, 0.047; Pr, 0.052; $\mathrm{Pr}^{1}, 0.029 ; \mathrm{Bu}^{\mathbf{1}}, 0.040$
(111), (112) k_{r}, Solvolysis of AkPhCHCl in 80% aqueous EtOH at 45° and 65°, respectively. ${ }^{m} \mathrm{Y}=\mathrm{CCl}$

Me, 1 180, 793; Et, 273, 190; Pr, 327, 218; Pr^{i}, 58.7, 50.0; $\mathrm{Bu}^{\mathrm{t}}, 2.18,2.35 ; \mathrm{t}-\mathrm{C}_{5} \mathrm{H}_{11}, 4.58,4.64 ; \mathrm{Et}_{2} \mathrm{CH}, 145,116$
(121), (122), (123) $\delta \Delta H_{\mathrm{f}}$ in (g), (g), $\mathrm{SO}_{2} \mathrm{ClF}$ respectively ${ }^{n} \mathrm{Ak}^{\mathrm{t}} \mathrm{Ak}^{2}-$ $\mathrm{Ak}^{3} \mathrm{C}^{+}, \mathrm{Y}=\mathrm{C}^{+}$
$\mathrm{Me}_{3}, 0,0,0 ; \mathrm{Me}_{2} \mathrm{Et},-6.1,-8.0,-8.8 ; \mathrm{Me}_{2} \mathrm{Pr},-12.3,-17.6$, $-15.3 ; \mathrm{Me}_{2} \operatorname{Pr}^{\mathrm{1}},-14.7,-15.9,-15.7 ; \mathrm{Me}_{2} \mathrm{Bu}^{\mathrm{d}},-23.4,-24.6$, -18.9; $\mathrm{MeEt}_{2},-12.6,-13.8,-15.9 ; \mathrm{Me}_{2} \mathrm{Bu}^{1},-19.6,-20.4$, -20.8
(201) K_{e}, Dissociation of $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NBMe}_{3}$ at $100^{\circ}(\mathrm{g}){ }^{\circ} \mathrm{Y}=\mathrm{NBMe}_{3}$ $\mathrm{H}, \mathrm{H}, \mathrm{H}, 4.6$; $\mathrm{Me}, \mathrm{H}, \mathrm{H}, 0.0350$; Me, Me, H, 0.0214 ; Me, Me, Me, 0.472 ; Et, H, H, 0.0705 ; Et, Et, H, 1.22; Pr, H, H, 0.0598 ; $\mathrm{Bu}, \mathrm{H}, \mathrm{H}, 0.0470 ; \mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{H}, \mathrm{H}, 0.0415 ; \mathrm{C}_{6} \mathrm{H}_{13}, \mathrm{H}, \mathrm{H}, 0.0390$; Pr $^{1}, \mathrm{H}, \mathrm{H}, 0.368 ; \mathrm{Bu}^{\mathrm{s}}, \mathrm{H}, \mathrm{H}, 0.373$; $\mathrm{Bu}^{\mathrm{t}}, \mathrm{H}, \mathrm{H}, 9.46$
${ }^{a}$ W. Duismann and C. Ruchardt, Liebig's Ann. Chem., 1976, 1834.
${ }^{\circ}$ G. Hellmann, H. D. Beckhaus, and C. Ruchardt, Chem. Ber., 1979, 112, 1808. ${ }^{c}$ W. Duismann, R. Hertel, J. Meister, and C. Ruchardt, Liebig's Ann. Chem., 1976, 1820. ${ }^{\text {a R. A. Wolf, }}$ M. J. Migliore, P. H. Euery, P. R. Gagnier, T. C. Subeta, and R. J. Torcino, J. Am. Chem. Soc., 1978, 100, 7967. ${ }^{e}$ A. Schulz and C. Ruchardt, Tetrahedron Lett., 1977, 849. ${ }^{f}$ Ref. b. ${ }^{g} \mathrm{C}$. Ruchardt, H. D. Beckhaus, G. Hellmann, S. Weiner, and R. Winiker, Angew. Chem., 1977, 16, 875. ${ }^{\text {h }}$ C. G. Overberger, M. T. O'Shaughnessy, and H. Shailit, J. Am. Chem. Soc., 1949, 71, 2661; C. G. Overberger and M. B. Berenbaum, ibid., 1951, 73, 2618; C. G. Overberger, W. F. Hale, M. B. Berenbaum, and A. B. Firestone, ibid., 1954, 76, 6185. 'S. W. Benson and H. E. O'Neal, in 'Kinetic Data on Gas Phase, Unimolecular Reactions,' U.S. Dept. of Commerce, National Bureau of Standards, No. 21, Washington, D.C., 1970. ${ }^{j}$ Ref. $c .{ }^{k}$ W. Duismann and C. Ruchardt, Tetrahedron Lett., 1974, 4517. 'H. C. Brown and H. L. Berneis, J. Am. Chem. Soc., 1953, 75, 10; A. C. Brown and R. S. Fletcher, J. Am. Chem. Soc., 1949, 71, 1845. ${ }^{m}$ G. Baddeley, J. Chadwich, and H. T. Taylor, J. Chem. Soc., 1954, 2405. ${ }^{n}$ E. M. Arnett and N. J. Pienta, J. Am. Chem. Soc., 1980, 102, 3329. ${ }^{\circ}$ H. C. Brown, ‘Boranes in Organic Chemistry,' Cornell University Press, Ithaca, 1972, p. 58.

Units of the rate constants in sets $1,2,9,10,102,111,112$, are s^{-1}, in set $104, \mathrm{~h}^{-1}$.
of the total steric effect which is due to branching at the i th carbon atom. An alternative measure of the dependence of the steric effect of the Ak groups on branching is the quantity $\varphi_{i k}$, defined by equation (19). Here φ measures the effect of

$$
\begin{equation*}
\varphi_{t k} \equiv a_{t} / a_{k} \tag{19}
\end{equation*}
$$

branching at the i th carbon atom relative to the effect at the k th carbon atom. In this work, we will set $k=1$, and consider only $\varphi_{i 1}$ values. Values of $\boldsymbol{P}_{i}, \varphi_{i 1}$, and s_{φ} are given in Table 4.

Table 2. Results of correlations with equations containing three independent variables

For equation (8), $X_{1}=a_{1} ; X_{2}=a_{2} ; \mathrm{X}_{3}=a_{3} ; X_{0}=a_{0}$; for equation (34), $X_{1}=a_{\mathrm{c}}, X_{2}=a_{1}, X_{3}=a_{2}, X_{0}=a_{0}$. ${ }^{\text {a }}$ Multiple correlation coefficient. The superscript indicates the confidence level (CL). When no superscript is present, the CL is $99.9 \%{ }^{\circ} \mathrm{F}$ test. The superscript indicates the CL. When no superscript is present, $\mathrm{CL}=99.9 \%{ }^{c}$ Partial correlation coefficient of the i th independent variable on the j th independent variable. The superscript indicates the CL, in its absence, the CL is $<90.0 \%$. ${ }^{d}$ Standard errors of the estimate, and of the regression coefficients. The superscript indicates the CL of the student t test for the significance of the regression coefficients. In the absence of a superscript, the CL is 99.9%. ${ }^{e}$ The percent of the variance of the data accounted for by the regression equation. ${ }^{f}$ The standard error divided by the root mean square of the dependent variable. ${ }^{s}$ The number of data points in the set. ${ }^{n} 95.0 \% \mathrm{CL} .{ }^{1}<10.0 \%$ CL. ${ }^{s} 98.0 \%$ CL. ${ }^{k} 99.5 \%$ CL. ${ }^{t} 99.0 \%$ CL. ${ }^{m} 30.0 \%$ CL. ${ }^{n} 80.0 \%$ CL. ${ }^{\circ} 90.0 \%$ CL. ${ }^{p} 50.0 \%$ CL. ${ }^{q} 70.0 \%$ CL. ${ }^{r} 20.0 \%$ CL. ${ }^{s} 60.0 \% \mathrm{CL} .{ }^{t} 10.0 \%$ CL. " 40.0% CL.

Table 3. Results of correlations with equations containing one or two independent variables

Set	X_{1}	X_{2}	X_{0}	$R^{\text {a }}$	$F^{\text {b }}$		$r_{12}{ }^{c}$	
2	1.13	0.387	-1.69	$0.9269^{\text {l }}$	$15.25^{\text {l }}$		0.164	
4	2.68		-2.18	0.9803	123.4		-	
6	1.03	0.685	-0.221	0.9813^{1}	39.04		0.234	
7	-6.12	2.72	67.9	$0.9846^{\text {l }}$	$47.47^{\text {l }}$		0.010	
8	-7.64	-2.62	61.2	$0.9456{ }^{\text {l }}$	21.10^{*}		0.241	
9	0.00397	0.497	-0.0362	0.9264	27.22		0.234	
10	1.26	0.0221	-2.95	0.9706^{1}	$32.57{ }^{\text {k }}$		0.155	
104	0.108	0.511	-1.86	$0.8988{ }^{\text {j }}$	$8.412^{\text {h }}$		0.225	
111	-0.908	0.305	3.23	0.9796	$47.46{ }^{\text {k }}$		0.218	
112	-0.832	0.282	3.03	0.9782	44.30 *		0.218	
121B	-7.91	1.21	24.7	0.9947	187.1		0.445	
122B	-8.03	1.37	23.7	0.9890	89.18		0.445	
123B	-6.29		17.1	0.9770	105.2			
201	-0.426	-0.519	2.23	$0.9092{ }^{\text {J }}$	$9.635^{\text {h }}$		0.484	
211	0.696	0.839	-2.72	0.9278	27.83		0.397	
Set	$S_{\text {est }}{ }^{\text {d }}$	$S_{1}{ }^{\text {d }}$	$S_{2}{ }^{\text {d }}$	$S_{0}{ }^{\text {d }}$	$100 R^{2}$	$\psi{ }^{\text {r }}$		n^{9}
2	0.580	0.209^{l}	0.197 n	$0.455{ }^{\prime}$	85.92	0.475		8
4	0.154	0.241		0.202	96.11	0.234		7
6	0.278	$0.122^{\text {l }}$	$0.157^{\text {h }}$	$0.231{ }^{p}$	96.30	0.278		6
7	3.01	$0.631^{\text {l }}$	$2.41{ }^{\text {s }}$	2.73	96.94	0.248		6
8	3.24	$1.18{ }^{\prime}$	$1.21{ }^{\circ}$	2.60	89.41	0.412		8
9	0.301	$0.0807{ }^{\text {i }}$	0.0691	$0.186^{\text {t }}$	85.81	0.435		12
10	0.373	$0.15{ }^{\text {l }}$	0.196^{\prime}	0.302	94.21	0.318		7
104	0.331	$0.146^{\prime \prime}$	0.125^{J}	$0.258{ }^{1}$	80.79	0.580		7
111	0.248	0.0932	$0.132{ }^{\circ}$	0.186	95.96	0.266		7
112	0.235	0.0884	0.125°	0.177	95.68	0.275		7
121B	1.01	0.432	0.486°	2.01	98.94	0.136		7
122B	1.48	0.632	0.711^{n}	$2.94{ }^{\text {l }}$	97.81	0.196		7
123B	1.61	0.614	-	$3.04{ }^{\text {l }}$	95.46	0.252		7
201	0.709	0.187°	0.241°	0.330^{l}	82.66	0.551		7
211	0.327	0.165^{\prime}	0.115	0.314	86.08	0.431		12

For equation (8), $X_{1}=a_{1}, X_{2}=a_{2}, X_{0}=a_{0}$. For equation (11), $X_{1}=S, X_{0}=h . R$ is the simple correlation coefficient. For equation (36), $X_{1}=C_{0}, Z_{2}=a_{1}, X_{0}=a_{0}$. For equation (3), $X_{1}=b_{0}, X_{2}=b_{1}, X_{0}=b_{10}$. For equation (34), $X_{1}=a_{\mathrm{c}}, X_{2}=a_{1}, X_{0}=a_{0}$. For lettered footnotes, see Table 2.

Table 4. Values of $P_{\mathrm{c}},{ }^{g} P_{i}, \varphi_{i j}$, and S_{φ}

Set	L.g. ${ }^{\text {a }}$	$P_{\text {c }}$	P_{1}	P_{2}	P_{3}	φ_{21}	S_{φ}	φ_{31}	S_{φ}
1	$-\mathrm{CO}_{3} \mathrm{Bu}{ }^{\text {a }}$		77.1	22.9		$0.296{ }^{\text {b }}$	0.119		
2	AkPhCH		74.5	25.5		0.342	0.185		
3	(E) $-\mathrm{Ak}-\mathrm{N}=\mathrm{N}$		26.6	37.2	36.2	$1.40{ }^{\text {b }}$	0.171	-1.36	0.221
4	${ }^{-} \mathrm{CO}_{3} \mathrm{Bu}^{\text {c }}$		(51.4)	(42.3)	(6.3)	$(0.823){ }^{\text {b }}$			
6	(Z) $-\mathrm{AkN}=\mathrm{N}$		60.1	39.9		0.665	0.172		
7	$\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{CH}$		$\sim 100^{\text {d }}$	$\sim 0{ }^{\text {d }}$		$\sim 0{ }^{\text {d }}$			
8	$\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}$		74.5	25.5		$0.343^{\text {b }}$	0.167		
9	$\mathrm{Z}^{1}-\mathrm{N}=\mathrm{N}$		$\sim 0{ }^{\text {e }}$	$\sim 100{ }^{\text {e }}$		Very large ${ }^{e}$			
101			44.2	34.3	21.5	$0.773^{\text {b }}$	0.177	-0.485	0.217
102	Cl		14.7	36.4	48.8	$2.48{ }^{\text {b }}$	0.910	-3.32	1.28
103			28.5	16.4	55.1	$0.587^{\text {b }}$	0.155	-1.93	0.275
104	Cl		$0{ }^{\text {c }}$	100^{e}		Very large ${ }^{e}$			
111	Cl		74.9	25.1		-0.336	0.149		
112	Cl		74.7	25.3		-0.339	0.154		
121		$(86.7)^{f}$		(13.3)					
122		$(85.4){ }^{f}$		(14.6)					
123		100							

${ }^{a}$ Leaving group. ${ }^{b}$ Included in the correlation with equation (31). ${ }^{c}$ Values of P_{i} and $\varphi_{i j}$ were calculated from a_{i} obtained for the correlation of v_{Ak} with the branching equation. ${ }^{d}$ These values result because a_{2} is not significant. ${ }^{e}$ These values result because a_{1} is not significant. ${ }^{f}$ These values are uncertain since r_{12} shows that n_{1} is a linear function of n_{c}. It is certain, however, that the predominant factor is polarizability and therefore n_{c} is the significant variable. ${ }^{s} P_{\mathrm{c}}$ represents the percent contribution of the variable n_{c} in correlations with equation (44). $Z^{1}=A k^{1} A^{2} C(C N), Z^{2}=4-O_{2} N_{6} H_{4}$.

Consideration of the values of φ_{21} and P_{1} and P_{2} clearly shows a wide variation in the composition of the steric effect as a function of branching. The φ_{21} values demonstrate this even more clearly. The standard errors in φ show that the highest and lowest φ_{21} values obtained are significantly different from each other. Then, from the P_{l} and φ_{21} values, it is certain that no single steric parameter can possibly represent the steric effect of Ak groups in radical formation.

For the purpose of clarifying our later discussion, at this point it is useful to note that we assume all steric effects are due to electronic repulsion between orbitals on atoms which are not directly bonded to each other. If repulsion is greater in the reactant than in the transition state (rate) or product (equilibrium) the result is steric augmentation; if the reverse is the case, the result is steric diminution. It has been pointed out that the use of the terms steric acceleration and deceleration should properly be restricted to rates. We needed terms which are generally applicable and which define any increase in a measurable quantity, Q, which results from the steric effect of some group as steric augmentation. Any decrease is then steric diminution. We shall use these expressions for all types of quantitative data, whether chemical reactivities or physical properties.

We now consider the sign of a_{i}. A positive a_{i} indicates steric augmentation and a negative a_{l} diminution. Our results for radical formation show that in all cases the a_{1} and a_{2} values are positive. The effect of branching at C^{1} and C^{2}, then, is steric augmentation. This is presumably due to relief of steric strain in the transition state for radical formation. In the only set of data for which the effect of branching at C^{3} can be effectively studied (set 3) we observe that the a_{3} value is negative, indicating steric diminution. We shall discuss this observation later.

We may also note on comparing the φ_{21} values that pyrolysis of the Z-configuration dialkylazo-compounds (4) is more sensitive to branching at C^{2} than for the E-configuration. We can attribute this to a repulsion between branches

at C^{2} in the alkyl groups of the Z-configuration which cannot occur in the E-configuration.

We may make one additional observation regarding the steric effect on alkyl radical formation. The φ_{21} values increase as the degree of branching at M^{1} and M^{2}, the first and second atoms of the leaving group, increases. A leaving group written in this form is shown in (5A) where the M^{\prime} are the atoms of which the leaving group is composed. As an example, consider the leaving group of set 1 (5B). In (5B), M^{2} is oxygen and $\mathbf{M}^{1}, \mathbf{M}^{3}$, and \mathbf{M}^{4} are carbon.

We may now consider the treatment of a set of data for rates of pyrolysis of $\mathrm{AkCO}_{3} \mathrm{Bu}^{\prime}$ (set 4, Table 1) which cannot be treated at the present time by correlation with equation (1). The inapplicability of equation (1) results from the fact that several of the data points are for cycloalkyl groups (cAk). Branches which are part of a cAk group do not behave sterically in the same way as acyclic branches. They can be treated by the branching equation only if 'effective' branching constants have been evaluated for them. ${ }^{2}$ We have therefore examined the correlation of the data with the modified

Taft equation (20) where v is a steric parameter defined from the van der Waals radii of \mathbf{X} and H by equation (21). Correl-

$$
\begin{gather*}
Q_{\mathbf{x}}=S v_{\mathbf{x}}+h \tag{20}\\
v_{\mathbf{x}}=r_{\mathbf{v x}}-r_{\mathbf{v \mathbf { H }}}=r_{\mathbf{v x}}-1.20 \tag{21}
\end{gather*}
$$

ation was successful and the statistics obtained are presented in Table 3. Since we have shown elsewhere that equation (22)

$$
\begin{equation*}
v_{\mathbf{x}}=\Sigma a_{\mathbf{i}}{ }^{0} n_{\boldsymbol{i}} \tag{22}
\end{equation*}
$$

holds we may use the values of a_{l}^{0} to calculate a_{l} for the correlation of $\log K$ with the branching equation by simply substituting equation (22) in (20) and equating this to equation (1) giving (23). Values of P_{i} and φ_{i} were calculated from

$$
\begin{equation*}
a_{i}=S a_{i}{ }^{0} \tag{23}
\end{equation*}
$$

the a_{i} values obtained from equation (23). They are given in Table 4.

Another problem of interest is the correlation of rates for the pyrolysis of (E)-dialkylazo-compounds, (set 9, Table 1) in which $A k=R^{1} R^{2} R^{3} C$ with $R=H$ or alkyl. In this case we are varying not only steric effects but electrical effects as well. This results from the fact that although the electrical effects of Ak groups are constant ${ }^{3,4}$ some authors still believe that alkyl groups exert variable electrical effects depending on the degree of branching. We know of no unequivocal evidence in favour of this viewpoint and have amassed a considerable body of evidence against it. Until and unless clearcut, unambiguous evidence of the variability of alkyl electrical effects is presented, we shall consider these effects to be constant.

$$
\begin{align*}
\sigma_{\mathrm{I}, \mathrm{Ak}} & =-0.01 \pm 0.02=0 \tag{24}\\
\sigma_{\mathrm{D}, \mathrm{Ak}} & =\text { constant } \neq 0 \tag{25}
\end{align*}
$$

The number of alkyl substituents bonded to the incipient radical carbon varies from 0 to 3 .

We may express the effect of $R^{1}-R^{3}$ on the formation of $\mathrm{Ak} \cdot$ by equation (6) which assumes additivity of substituent effects. Thus, we have equation (26). For $R=H, \sigma_{\mathbf{I}} \equiv \sigma_{\mathrm{D}} \equiv$

$$
\begin{equation*}
\log K_{\mathrm{Ak}}=L \Sigma \sigma_{\mathbf{I R}}+D \Sigma \sigma_{\mathbf{D R}}+D \Sigma{v_{\mathbf{R}}}+h \tag{26}
\end{equation*}
$$

$v \equiv 0$. From equations (8), (22), and (23), we have equation (27). Now equations (28) and (29) hold where $n_{A k^{\prime}}$ is the

$$
\begin{gather*}
\log K_{\mathbf{A K}}=L \Sigma \sigma_{\mathbf{1 R}}+D \Sigma \sigma_{\mathbf{D R}}+\sum_{j=1}^{q}\left(\sum_{i=0}^{p} a_{l} n_{l}\right) j \tag{27}\\
\Sigma \sigma_{\mathbf{I R}}=n_{\mathbf{A \mathbf { A } ^ { \prime }}} \sigma_{\mathbf{I}, \mathbf{A k ^ { \prime }}} \tag{28}\\
\Sigma \sigma_{\mathbf{D R}}=n_{\mathbf{A k}} \mathbf{\sigma}_{\mathbf{D}, \mathbf{A} \mathbf{k}^{\prime}} \tag{29}
\end{gather*}
$$

number of alkyl groups in Ak. Then, we have equation (30). As equations (31) and (32) apply we obtain (33). If we need

$$
\left.\begin{array}{c}
\log k_{\mathrm{r}}=n_{\mathrm{Ak}}\left(L \sigma_{\mathrm{ISAk}}{ }^{\prime}+D \sigma_{\mathrm{DSAK}}{ }^{\prime}\right)+\sum_{j=1}^{q}\left(\sum_{i=0}^{p} a_{i} n_{i}\right) j \\
\Sigma \mathrm{C}(1)=n_{0}=n_{\mathrm{Ak}^{\prime}} \\
L \sigma_{\mathrm{ISAK}} \\
\log k_{\mathrm{r}}=b_{0} n_{0}+{\sigma_{\mathrm{DSAK}}}=b_{0} \tag{33}\\
j=1 \\
i=0
\end{array} a_{i} n_{\mathfrak{l}}\right)_{j}
$$

to consider branching only at C^{0} and $\mathrm{C}^{1}(i \leq 1)$ then we have equations (34) and (35). The correlation equation actually used was (36).

$$
\begin{align*}
\log k_{\mathrm{r}} & =b_{0} n_{0}+a_{0} n_{0}+a_{1} n_{1} \tag{34}\\
& =c_{0} n_{0}+a_{1} n_{1} \tag{35}\\
\log k_{\mathrm{r}} & =c_{0} n_{0}+a_{1} n_{1}+a_{10} \tag{36}
\end{align*}
$$

Carbenium Ion Formation.-We now turn our attention to steric effects upon the formation of alkyl carbenium ions. Again, the data studied are set forth in Table 1 and results of the correlation in Tables 2 and 3. Values of P_{i} and $\varphi_{i 1}$ are in Table 4. The correlations are, except for set 104, highly significant. The values of P_{1} and P_{2} again indicate the impossibility of representing the alkyl steric effect by a single steric substituent parameter. Further support is obtained by a consideration of φ_{21} and S_{φ} values. It follows then that the steric effects of alkyl groups on the formation of alkyl carbenium ions cannot be represented by a single set of steric parameters, in agreement with our results for alkyl radical formation.

The signs of a_{1} and a_{2} are positive and therefore the effect of branching at C^{1} and C^{2} is steric augmentation, presumably as a result of the relief of steric strain in the reactant. In the two sets for which the effect of branching at C^{3} can be determined, a_{3} is negative and steric diminution occurs. It will be recalled that this was also the case in the only set of radical formation rates for which a_{3} could be determined. Thus, in the case of both alkyl radical and alkyl carbenium ion formation, branching at C^{3} increases steric repulsion in the transition state relative to the reactant.

This is readily understood if we consider that relief of steric strain due to a change in hybridization from $s p^{3}$ in the reactant to something approaching $s p^{2}$ in the transition state will decrease as we go down the chain of an alkyl group. Thus, the greatest relief of steric strain should be at C^{1}. There should be much less at C^{2} and very much less at C^{3}. Then, it is quite reasonable that other steric effects predominate over the relief of steric strain in branching at C^{3}, and that the overall effect is steric diminution.

The results obtained for solvolysis of AkCHPhCl also show a difference in the sign of a_{i}, thus a_{2} is positive and a_{1} is negative. By contrast, in the pyrolysis of $(\mathrm{PhAkCH})_{2}$ we find that both a_{1} and a_{2} are positive. We can account for this strikingly different behaviour in the following manner. (a) The Cl leaving group in the solvolysis of AkPhCHCl (6) is very much smaller than the AkPhCH 'leaving group' in the pyrolysis of $(\mathrm{AkPhCH})_{2}$ (7). Thus, branching at C^{1} exerts a larger effect in the latter than in the former. (b) The transition state for the solvolysis of G is likely to be close to the carbenium ion (8). Then, C^{1} of the Ak group, the Ph group, and the incipient carbenium ion carbon should all be approximately coplanar. Inspection of (8) suggests the possibility of considerable steric repulsion between one of the orthohydrogen atoms in the Ph group and branches on C^{1}. This is the major contribution to the effect of branching at C^{1} due to the small size of the leaving group.

We again observe that, for the formation of $\mathrm{Ak}^{1} \mathrm{Ak}^{2} \mathrm{Ak}^{3} \mathrm{C}^{+}$ carbenium ions, the effect of branching at C^{2} increases with the increasing size of the leaving group.

The Effect of the Leaving Group.-It seemed of interest to attempt to quantify the effect of the leaving group on the steric effect due to branching at C^{1} and C^{2}. We begin by recognizing that if for any particular data set, a steric parameter of the correct composition is available, v_{c}, then the

(8)

(7)

(6)
modified Taft equation applies, and we have equation (37).

$$
\begin{equation*}
Q_{\mathrm{Ak}}=S v_{\mathrm{c}, \mathrm{Ak}}+h \tag{37}
\end{equation*}
$$

In this equation, the steric substituent parameter, v_{c}, represents the steric effect, and the steric reaction parameter, S, represents the effect of reaction conditions such as medium, temperature, pressure, and reagent. As any steric parameter can be represented as a function of branching, equation (38) results. Thus, from equations (23) and (18), we have (39) and from (23) and (19), (40). It follows, then, that P_{i} and $\varphi_{i k}$ are

$$
\begin{gather*}
v_{\mathrm{c}}=\Sigma a_{i}{ }^{0} n_{i} \tag{38}\\
P_{i}=\frac{100 S\left|a_{i}{ }^{0}\right|}{S \Sigma\left|a_{i}{ }^{0}\right|}=\frac{100\left|a_{i}{ }^{0}\right|}{\Sigma\left|a_{i}{ }^{0}\right|} \tag{39}\\
\varphi_{i k}=\frac{S a_{i}{ }^{0} m}{S a_{k}{ }^{0}}=\frac{a_{i}^{0}}{a_{k}{ }^{0}} \tag{40}
\end{gather*}
$$

dependent only on the steric effect composition, and are independent of the reaction conditions.

We now consider the correlation of φ_{21} values for seven of the sets studied with the branching equation. The variables are the extent of branching at the atoms M^{1} and M^{2} in the leaving group. Thus, the correlation equation is (41). The

$$
\begin{equation*}
\varphi_{21}=b_{0} n_{0}+b_{1} n_{1}+b_{10} \tag{41}
\end{equation*}
$$

φ_{21} values included in the correlation are those for the formation of $\mathrm{Ak}_{3} \mathrm{C} \cdot$ and $\mathrm{Ak}_{3} \mathrm{C}^{+}$; they are noted in Table 4. As in this set any bond from an M^{1} or M^{2} atom to some atom other than a hydrogen counts as a branch, equation (41) is only a crude model. We have noted elsewhere that the branching effect depends on the type of branching atom. ${ }^{5}$ Nevertheless, correlation with equation (41) is significant (for statistics, see set 201, Table 3) and the results show that the major factor determining steric effect composition in alkyl radical and carbenium ion formation is the degree of branching at the first atom $\left[\mathrm{M}^{1}\right]$ of the leaving group.
$\Delta \mathrm{H}_{\mathrm{f}}$ for Carbenium Ions.-Finally, we turn our attention to the enthalpies of formation of alkyl carbenium ions in the gas phase, and in $\mathrm{SO}_{2} \mathrm{ClF}$. Reports have appeared which show that gas phase reactions can exhibit a significant dependence on polarizability. ${ }^{3 c, 6}$ A useful measure of polarizability is the group molar refractivity. ${ }^{7}$ We have defined the polarizability
parameter α by equation (42) where $M R_{X}$ and MR_{H} are the

$$
\begin{equation*}
\alpha=\left(\mathrm{MR}_{\mathrm{X}}-\mathrm{MR}_{\mathrm{H}}\right) / 100 \tag{42}
\end{equation*}
$$

molar refractivities of X and H , respectively. ${ }^{2}$ We have also shown that for alkyl groups, equation (43) in which n_{c} is the

$$
\begin{equation*}
\mathrm{MR}_{\mathrm{Ak}}=a_{\mathrm{c}} n_{\mathrm{c}}+a_{0} \tag{43}
\end{equation*}
$$

number of carbon atoms in the alkyl group, is obeyed. As in the data available (sets $121-123$) only branching at C^{1} and C^{2} need be considered, we have correlated the data with equation (44).

$$
\begin{equation*}
Q_{\mathrm{x}}=a_{\mathrm{c}} n_{\mathrm{c}}+a_{1} n_{1}+a_{2} n_{2}+a_{0} \tag{44}
\end{equation*}
$$

Significant correlations were obtained (sets labelled A, in Table 2) and the best results arose by excluding n_{1} (sets labelled B in Table 3). The results show that the major factor in the variation of ΔH_{f} with structure in both the gas phase and in $\mathrm{SO}_{2} \mathrm{ClF}$ is the polarizability. There seems to be a barely significant dependence on branching at C^{2} in the gas phase data. No dependence on branching, and therefore no steric effect, can be detected in the $\mathrm{SO}_{2} \mathrm{ClF}$ data. Due to the small data sets available, the conclusions regarding the steric effect on ΔH_{f} can only be regarded as tentative. That the major effect is due to polarizability seems fairly certain.

Borane-Alkylamine Adducts and Leaving Group Steric Effects.-Some corroboration of our results on the effect of leaving group branching can be obtained by a consideration of the data obtained by Brown ${ }^{8}$ and his co-workers for the dissociation of $R^{1} R^{2} R^{3} \mathrm{NBMe}_{3}{ }^{9}(\mathrm{R}=\mathrm{Ak}$ or H$)$ in the gas phase. This reaction is formally analogous to the formation

$$
\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{NMBe}_{3} \xlongequal{K_{\mathrm{e}}}=\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{R}^{3} \mathrm{~N}+\mathrm{BMe}_{3}
$$

of a carbenium ion with $R^{1} R^{2} R^{3} N$ as the leaving group. The discussion regarding the correlation of rates of thermolysis of $(E)-\mathrm{Ak}_{2} \mathrm{~N}_{2}$ (set 10) is applicable here as well. Since this process is taking place in the gas phase, we must also take into account the possible importance of polarizability as discussed above with regard to the correlation of the enthalpies of formation of carbenium ions in the gas phase. We have therefore made use of equation (45). As a_{c} and a_{2} were not

$$
\begin{equation*}
Q_{\mathbf{R}^{1} \mathbf{R}^{2} \mathbf{R}^{3}}=a_{\mathrm{c}} \Sigma n_{\mathrm{c}}+a_{0} \Sigma n_{0}+a_{1} \Sigma n_{1}+a_{2} \Sigma n_{2} a_{10} \tag{45}
\end{equation*}
$$

significant, we correlated the data with equation (36) obtaining significant results (set 211 , Table 3). The data used in the correlation are set forth in Table 1. While Σn_{0} is a function of both electrical and steric effects, n_{1} is a measure only of the steric effect of branching at C^{1}. The significance of n_{1} as a parameter supports the argument that branching in a leaving group can have an important effect on reactivity.

Correlation with the Extended Branching Equation.-We have correlated sets 3 and 103 with the extended branching equation [equation (7)]. The results are set forth in Table 5. The correlation equation used was (46). In the sets studied,

$$
\begin{align*}
& Q=a_{11} \Sigma n_{11}+a_{12} \Sigma n_{12}+a_{13} \Sigma n_{13}+a_{21} \Sigma n_{21}+ \\
& a_{22} \Sigma n_{22}+a_{23} \Sigma n_{23}+a_{0} \tag{46}
\end{align*}
$$

$\Sigma n_{32}=\Sigma n_{33}=0$ and Σn_{31} is highly linear in Σn_{21}. We can therefore consider the effect of branching as a function of b [the index which indicates whether a branch is the first,

Table 5. Results of correlations with the extended branching equation

Set	a_{11}	a_{12}	a_{13}	a_{21}	a_{22}	a_{23}	a_{0}	R^{a}
3	0.307	0.455	0.549	0.0627	0.713	1.21	-0.196	0.9785
103	0.292	0.221	0.445	-0.409	0.808	0.0505	-0.139	0.9722
Set	$F^{\text {b }}$	$r_{1112}{ }^{\text {c }}$	$r_{1113}{ }^{\text {c }}$	$r_{1121}{ }^{\text {c }}$	$r_{1122}{ }^{\text {c }}$	$r_{1123}{ }^{\text {c }}$	$r_{1213}{ }^{\text {c }}$	$r_{1221}{ }^{\text {c }}$
3	63.85	0.277	0.092	0.255	0.111	0.000	0.489^{n}	0.348
103	43.05	0.283	0.093	0.279	0.120	0.000	$0.498{ }^{\text {h }}$	0.323
Set	$r_{1222}{ }^{\text {c }}$	$r_{1223}{ }^{\text {c }}$	$r_{1321}{ }^{c}$	$r_{1322}{ }^{\text {c }}$	$r_{1323}{ }^{\text {c }}$	$r_{2122}{ }^{c}$	$r_{2123}{ }^{c}$	$r_{2223}{ }^{\text {c }}$
3	0.380	0.241	0.186	0.277	0.215	0.287	0.223	0.775°
103	$0.486{ }^{n}$	0.356	0.149	0.275	0.201	0.342	0.250	$0.733{ }^{v}$
Set	$S_{\text {est }}{ }^{\text {d }}$	$S_{11}{ }^{\text {d }}$	$S_{12}{ }^{\text {d }}$	$S_{13}{ }^{\text {a }}$	$S_{21}{ }^{\text {d }}$	$S_{22}{ }^{\text {d }}$	$S_{23}{ }^{\text {d }}$	
3	0.204	0.0550	0.0792	0.0925	0.0653 *	0.163	0.179	
103	0.146	0.0400	0.0605	0.0670	0.0515	0.120	$0.135^{\text {r }}$	
		Set	S_{0}	$100 \mathrm{R}^{2}{ }^{\text {e }}$	n^{g}			
		3 103	$\begin{aligned} & 0.115^{n} \\ & 0.0838^{n} \end{aligned}$	$\begin{aligned} & 95.75 \\ & 94.51 \end{aligned}$	24			

For footnotes $a-u$, see Table 2. ${ }^{v} 99.9 \%$ CL.
second, or third at a given C^{d}] only at C^{1}. Applying equation (19) we can calculate $\varphi^{\prime}{ }_{i 1}$ values from equation (47).

$$
\begin{equation*}
\varphi_{t 1}^{\prime}=a_{t b} / a_{t 1} \tag{47}
\end{equation*}
$$

For set 3 , we have $\varphi^{\prime}{ }_{12}=1.48 \pm 0.37, \varphi_{13}^{\prime}=1.79 \pm 0.44$; for set $103, \varphi^{\prime}{ }_{12}=0.76 \pm 0.22, \varphi^{\prime}{ }_{13}=1.52 \pm 0.31$. Both sets give φ_{13} values which are not significantly different from each other. The φ_{12} values are significantly different, however. Radical formation is more strongly affected by the second branch at C^{1} than by the first. For carbenium ion formation, the reverse is observed.

The linearity of Σn_{31} with Σn_{21} and of Σn_{23} with Σn_{22} makes it impossible to resolve the dependence of branching on b at C^{2} in these data sets. Furthermore, no conclusion on the variation of the steric effect with branching at C^{d} can be reached due to collinearity. By contrast, the results with the simple branching equation are unaffected by collinearity, making it possible to reach conclusions on the variation of the steric effect with branching at C^{t}. The extended branching equation has allowed the variation of the steric effect at C^{1} with b to be studied, however. It seems reasonable to make use of both the simple and extended branching equations whenever possible. They both contribute to an understanding of the variation of $A k$ steric effects with branching.

Conclusions.-We may summarize our results as follows. (1) In the formation of alkyl radicals and alkyl carbenium ions, the variation in the composition of the steric effect as a function of branching is very large. No single steric substituent constant can possibly account for all the observed steric effects. (2) The most important factor in determining the relative importance of branching at C^{2} to that at C^{1} is the degree of branching at the first atom of the leaving group. This is true for both alkyl radicals and alkyl carbenium ion formation. (3) Branching at C^{1} and C^{2} causes steric augmentation in both alkyl radical and alkyl carbenium ion
formation, branching at C^{3} apparently results in steric diminution. Thus, different portions of the same alkyl group can have opposite steric effects on the reactivity. (4) The expanded branching equation was developed to represent the variation of alkyl steric effect with the order of branching at a given carbon atom. It has been applied with some success to two data sets. Radical formation is much more sensitive to a second branch at C^{1} than is carbenium ion formation. (5) The branching equation is a very useful method for the study of steric effects of alkyl groups. It accommodates the entire range of steric effect composition and permits the detection of opposing steric effects in different parts of the same alkyl group.

References

1 M. Charton, J. Org. Chem., 1978, 43, 3995.
2 (a) M. Charton, 'Proceedings of the 3rd Congress of the Hungarian Pharmacological Society, Budapest, 1979,' Academiai Kiado, Budapest, 1980, p. 211; (b) O. E. Dubois, J. A. MacPhee, and A. Danaye, Tetrahedron, 1980, 36, 754, 919.
3 M. Charton, (a) J. Am. Chem. Soc., 1977, 99, 5687; (b) J. Org. Chem., 1979, 44, 903; (c) EUCHEM Conference on Correlation Analysis in Organic Chemistry, Assisi, 1979, Abstracts, P-21; (d) Prog. Phys. Org. Chem., 1981, 13, 119; (e) M. Charton and B. I. Charton, J. Org. Chem., 1982, 47, 8.

4 F. G. Bordwell, G. E. Drucker, and G. J. McCollum, J. Org. Chem., 1976, 41, 2786.
5 M . Charton, EUCHEM Conference on Correlation Analysis in Organic Chemistry, Assisi, 1979, Abstracts P-3.
6 R. W. Taft, M. Taagepera, J. L. M. Abboud, J. F. Wolf, D. J. DeFrees, W. J. Hehre, J. E. Bartness, and R. T. McIver, J. Am. Chem. Soc., 1978, 100, 7765.
7 M. Charton and B. I. Charton, J. Org. Chem., 1979, 44, 2284.
$8 \mathrm{H} . \mathrm{C}$. Brown, 'Boranes in Organic Chemistry,' Cornell University Press, Ithaca, 1972, p. 58.

Received 2nd November 1971; Paper 1/1702

